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Abstrao t

The measurement of the types of ions present in gaseous

plasmas and their behavior as a function of timi, gas pressure,

method of plasma excitation, etc., is believed to be a necessity

for obtaining conclusive interpretations of a large number of

phenomena occurring in these plasmas. The theory of a mass-

spectrometer of the quadrupole-field type is given. The reasons

which led to the choice of this type of mass-spectrometer for

the study of basic collision processes occurring in gaseous

plasmas are discussed in detail. The mass-spectrometer can be

outgassed at a temperature of 400°C in order to ensure ultra-

high gas purity. Construotion details of the mass-spectrometer,

the associated electronic equiruent and vacuum system are included

in this manuscript.
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Chapter 1

Introduction

A renewed interest in the study of basic collision processes

arose, during the last decade, in the field of Plasma Physics. This

is mainly due to the realization that an understanding of the basic

processes occurring in gaseous plasmas say be of use in fields re-

lating to a) space-flight physics, b) rocket propulsion technology,

c) conversion of thermal energy into electrical energy, d) black-

out phenomena and e) production of energy by mans of nuclear fusion.

As a consequence, a research group active in the study of basic

phenomena in gaseous plasmas has been established at the Department

of Electrical Engineering of the University of Minnesota. One of the

main goals is to increase the understanding of the physics of dis-

integrating plasmas. The processes determining the rate of decrease

of the charge density (electron density) are:

1. Recombination of electrons with positive charge carriers.

2. Diffusion (in most cases ambipolar) of charge carriers

towards the boundaries of the plasma.

3. Attachment of electrons to neutral particles followed by

negative ion-positive ion recombination.

4. Production of charge carriers during the disintegration

period (afterglow period) of the plasma by metastable atom-metastable

atom interactions.

5. Conversion of one type of ion into another type; for instance,

the conversion of atomic ions into molecular ions is assumed to be an

important process.
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It is evident that, when confining the studies to the measure-

ment of the electron density as a function of time during the afterglow

period only, a conclusive interpretation of the measurements is risky

if not without any value. It is, therefore, necessary to measure

various quantities simultaneously and to combine the results obtained

with the different measuring techniques.

In order to aid the interpretation of the complicated phenomena

occurring in disintegrating plasmas, the identification of the type'

of ions present and their behaviour aaring the afterglow period be-

comes a necessity. Therefore, plans were made for the construction

of a mass-spectrometer, which has a resolving power sufficient for

distinguishing between the various types of ions, combined with a very

high transmission and collection efficiency. This mass-spectrometer

will make it possible to identify the types of ions present as well

as their rate of change during the afterglow period.

This manuscript describes the development of a quadrupole type

mass-spectrometer which meets these particular requirements. In

addition, the other advantages this typehas over the more ronventional

mass-spectrometers, will be discussed.

Since 1913, when J. 3. Thomson developed the parabolic mass-

spectrometer employing parallel electrostatic and magnetic fields,

numerous techniques have been developed for mass analysis as is

apparent through examination of the literature. The most common types

of mass-spectrometers are:

Magnetic mass-spectrometers: This type analyzes the mass of

monoenergetic ion beams by using 600, 900, or 1800 homogeneous sector

magnetic fields.
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Time-of-fliaht mass-spectrometers: This type utilLses the

principle that the time needed for an ion with specific energy to

traverse a drift space is maso dependent.

A rather new type of mass-spectromter was developed by W. Paul

and others at the University of Bonn, Germany, since 1953. This

spectrometer employs the %ass filteringff principle, produced when

injecting ions through a quadrupole rf field and do field applied

simultaneously. The quadruvole tyve svectremeter was chosen for our

particular applications as it offers the following advantages over the

other types:

1. The resolution of the instrument is variab-e and can be

oanged very easily by simply changing the ratio oi the applied dc

voltage to the rf voltage amplitudes. This makes It possible to

ensure saximum efficiency and hence higher sensitivity throughout

the entire mass range. This point will be discussed in greater detail

in a subsequet chapter.

2. Contrary to the previously mentioned types of spectromters,

the quadrupole spectrometer offers no velocity discrimination; only

an upper limit exists.

3. In contrast to the magnetic mass-spectrometer, the 'ass

filter" permits operation at higher residual gas pressures, because

the stability characteristics of an ion are Rot changed (at least to

a first approximation) by collisions with molecules of the residual

gas (disregarding charge exchange). It is, therefore, expected that

the line broadening caused by residual gases, as is known from magnetic
1

mass-spectrometers, will be substantially less in the case of the

quadrupole spectrometer.
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4. No magnetic field requirements: It in well s..nwn that strav

magnetic fields greatly disturb the conditinns of an active a,. well

as a passive plasma The quadrupole spectrometer does not employ a

magnetic field thus eliminating the shielding problem which becomes

very difficult at high mass analysis with magnetic spectrometers.

5. It will be shown later that th, injection conditions on the

-- le spectrometer, and especially the allowable radial energies

are quite, tolerable tjtUg *el14nating the need for slits and other

complicated focusing requirements. Moreover, this increases the

efficiency of the mass-spectromet-ir.

6. The quadrupole mass-spectrometer described here has the

extra feature of being bakeable thus Insuring operation with a clean

high-vacuum system.

The above considerations governed the decision as to the type

of spectrometer to be used. The instrument io now being constructed

at the Department of Electrical Engineering of the University of

Minnesota.
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Chapter 2

Theory of the Ouadrupole Mass-Snetrnmter

2.1 ntroduction

The ams filtering action of the quadrupole sam-spectrmeorter is

based on the behaviour of the solutions of the ecuations of motion of

the injected charged particles. In this chapter., ne will first obtain

the differential equations of motion of the inj reted particles and

then proceed to solve it under specific conditiorms of periodicity.

We will then discuss the general theory of the mlutions in order to

be able to understand the behaviour of the solutUl ena under various

applied conditions and thus determine the tebiliL ty regions essential

for the operation of the spectrometer.

2.2 Equations of motion

The application of a voltage (U + V con wt) on a hyperbola-shaped

quadrupole shown in Fig. 2.1 results in the etak'lishment of a potential

distribution within the quadrupole region which s. 4n be writtenlas*
2 2

0 - (U + V cos Wt) X--LL
r0

where ro is the distance from the origin to the pint of intersection

of the two rectangular hyperbolae with the x and -Y axos. Hence, the

electric field distribution in the region is

E .- . - - 2 (U + Vcos wt) xx bx 2r
0

E 6 - 2 (U + Vco .wt) -1 -
by 2

* We neglect end effects,,
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E 0 .

We will now proceed to analyse the motion of a positively charged

particle injected in the s-direction into the electric field region.

The equations of notion of a charged particle in the x, y and s

dir .tions are

m e E - -2 e (U + V co wt)
ro

or

* + 2 e (U + V coo wt) . -0

my-2e (U+Vcouwt)- -  -02

ro

and

S' -= 0

or

m k = constants

Since the sign of the do. component of the field in the y-

dircction is negative, the force due to this constant field exerts a

defocusing influence on the ions (tends to increase y). In the x-

direction, however, the particles are focused by the constant component

of the field.

It is to be noted, however, that the ac component of the field

dominates the motion of the ions since the amplitude V is larger than

U as will be illustrated later.

Consider the motion in the x-direotion:

m'' Li (U + V coo Wt) x = 0 (2.1)
2

r
0
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Let wt - 2 y, so that

dx w dx
dt 2 d

and

d2x w d w d x w2 d2x

dt 2  2  2d d dY2

Substitution in equation 2.1 gives

W2 d2x ( 2 U + 2
4  dY2  (m ro2  m r 2 x)

or

d2x + (M8eL 8 eV con 2r X2-" 22 2 os )y x ,O

dr+ w~r°  m w2r

Denoting

a and q= 2 2

m w2r 2 m w2r
0 0

gives

d2x
d 2  + (a + 2q cos 2y) x - . (2.2)
dy2

Following the same procedure, one can easily find the equation of

motion in the y-direction to be

2
EX - (a + 2q cos 2y) y - 0. (2.3)
dr

Equations (2.2) and (2.3) describing the motion of the charged part-

icles in the field are "Mathieu type equations". The behaviour of

the particles is thus determined by the properties of the solutions

of those equations.
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The Mathieu equation is a linear, second order differential

equation with constant periodic coefficients. Mathieu, in 1868,2

while determining the vibrational modes of a stretched membrane

having an elliptical boundary, obtained an equation of the form

d v + (a-2q cos 2s) v - 0
ds2

This equation is considered to be the normal form of a Mathieu

equation. We wil apply, in our case, the normal form and proceed

to solve the equation

d + (a-2q cos 2,r) x - 0. (2.4)

Negative values of q, or a phase shift of + 1 applied to equation
I2

(2.4) yields the equation descrlblng the motion of the charged particles

in the x-direction. Negative values of 'a' yield the equation for the

motion in the y-direction.

2.3 Periodic solutions

The solution of equation (2.4) takes different forms according

to the values of Na" and q. For the present, we shall confine our

attention to appropriate solutions,.periodic in r, with period IT or

2w. One should note that the solutions to be obtained are by no means

general solutions, but will serve as a guiding line towards understanding

the general behaviour of the solutions which will follow later. As a

consequence of the priodicity,'a" has definite values called Char-

actorestic Numbers.

When q - 0, the solution of equation (2.4) becomes quite simple

and will include terms in sin mx or cos mx, where

a - m2 , m- 1 , 2 , 3 , etc.
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We shall adopt the convention that the coefficient of coo mx and

sin w. is unity for all q,2 without any losm of generality, since we

will discuss each type of solution separately.

When q # 0, for the solution of equation (2.4) to have period v or

2 r, "a" is to be a function of q.

Let
2 2

a - m + 1q + a2q + .....

To illustrate a roethod of finding a particular solution we

take a - 2 -

For q> 0

a + alq + a.,q ------

2.3.1 Cosine-series solutions

Let

x - co y + q c1 (y) + q c2 (y) + - - - , (2.5)

since the solution reduces to x - cos y when q - 0.

Thus

x = d2x/dy2  cos y + q elm + q2c2 +

where d2

C- -

1 dy 2

Hence

ax - cos y + q(c1 + a. cos y) + q 2(c 2 + a1c1 + cos ' + .. ..

Substituting into crquation (2.4) and equating coefficients of like

powers of q, we get

q : cosr - coo y 0

q 0: C 1 I N - cos 3Y + (a l-1) cos " = 0.
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Hence

(D2 + 1) 1  con 3y- (a1-1) cos y

where

D - d and D2 M 0.dr d

The particular integral for the second term on the right hand side, vis.

(a1l1) cos y gives

1
1 a-l) r coo v

which is nonperiodic.

Thus

1 1 and O + c1  cos 3

so that

- coou y =-1 cos $,
1 9- I c38

similarly, equatinq the coefficients of q2 we get

co + C2 + C1  - 2c1 con 2y + a2 con y - 0

Hence

C2o +C 2 - Cos 3yr+ 1 cos5-+ (I+ a2 ) coo '0.

Following the same reasoning, we obtain

so that
+ c 1 1

c2 + 2  cos 3y cos 51

or

C2  . cos 3 + coo 5s "6419
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Proceeding in the same manner for higher orders of q we obtain the

coefficients a and c and upon substitution in equation (2.5) we get a

solution of Mathieu~s equation, periodic in y with period 2w. It is

denoted by ce1 (y0q) and represented by the series

ce(y,q) c oo. r " q Co. Sr+ q (_ co. Y + I cos )

1 31 4 1- 5 q ( cos 3y r-icosy + T-cos 7y)

1 4 .11 o.y 1+ 496q4 (- con 3Y" + t Cox 5r" - L cog ?Y
4096 12

+ - cos 9y) + O(q5 ,
180

The value of lae necessary to yield this solution, i.e., the

Characteristic Number is

1 2 1 3 1 4 11 5 6
a= q - W q- - y536 q + 3 6 8 6 4 

q  +(q

The notation ce (yq) signifies a cosine type Mathieu function of

order m, which reduces to a multiple of cos my when q - 0. It is clearly

seen that there is an infinite number of solutions of this form which

are even periodic functions in y.

2.3.2 Sine-series solutions

2ConsiderIng the case that m . 1, but now assume a solution of

the type

x sin y + q aI(y) + q 2 2 (Y) +-- - - - --

and proceeding In a manner similar to that adopted in section 2.3.1

we obtain a sine type of Mathieu function designated se (y,q) as
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1 1 2 1
sel(y,q) sin y - q sin 3y + F- q (sin 3,y + 1 sin 5y)

131 4 1

512sin 3y + sin 5y + 1sin7)

12 4 1 11
+I 4 II si Y+- in , I sin 7Y" + 1'!  sin 9y)
496 q (-i- sin 3r * sin 5y 12 180

+ O(q5

provided

a - l1q - 1q2 + L 3 1 4 11 5 6
a 64 -536 q 36864 q + O(q)

2.3.3 Solutions of higher order

One can proceed in a similar manner to evaluate the solutions of

Mathieu's differential equation for m> 1 and also compute the Char-

acteristic Numbers am , bm corresponding to solutions cem(y,q)

e 1yq, respectively.

One obtains the following values

1 2 7 4 29 6 68687 8 10
o 2 q  4 1-i q  -2304 q  * 18874 3 6 8 q + O(q

1 2 1 3 1 4 1 5
b1 - -q - 8 6 jq -1-36 q - 68-6'4 q

49 6 55 7 265 8 9
589824 q 9437184 q 1 5 2 4 6 2 0 8 q +

a1 : replace q by -q in the expression for b1

b 2 5 4 289 6 21391 8 10
2 24 26240 4 5 8 6,7 14 240 0 q + o(q)

5 2 763 4 1002401 6 1669068401 8 10a2  4 - 2 q 13 24  79264 - -
2  - i AM q  9626240 q 458647142400 q + (q

. i 3 13 4 5 5 1961 6

3  9* q - q 20480q 235 92 9 60

609 ) 8
L04M560
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a3 : replace q by -q in the expression for b3

1 2 -017 4 1049 6 8-16 + 3 0 q 864 0  2721600000 q +(q

1 2 433 4 5701 6 8

a4  16 + i 0 q + 84 q - 2 7 2 1-600 q + O (q)

b5  25 + 1 q2 + 11 q4 1 q5 + 63 q  + O (q7

~-25 4 8 q 771 4  14 745 6 q 891 813 888 q 0q

a5 : replace q by -q in the expression for b5

+ 1 2 187 4 5861633 6

6 -36 + 7 0 q + 4 3 9040 0 0 q 929359 87 200000 + O (q8 )

2 187 4 6743617 6 8

a6  + - q + 4 390400 0 q + 92935 987 000  q + O (q )

When a> 7, the following formula3 is correct up to (and Including)

the term in q6

a., bm -m2 + 21 q2 2 +7 q4

2(n2-1) 32 (m2_1)3 (*2-4)

+ 94 + 582 + 29 6

64(m 21)5 (a 24)(m 29)

These formulae are used to calculate "a" when q is adequately sma'l

and of either sign.,

It should also be noted that

1. The functions: ce2n , so2n+2 *n-0,l,2, . ) are periodic

with period ff.

2. The functions: Ce2n+1 , so2n+l (n-0,1,2, . ) are periodic

with period 2f.

3,, All the above functions have n real seros in the region
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Inc*4 has tabulated the values of so I a .a5 and bI , b2 -b in

the range q - 0 - 40 to 10 significant figures. Plotting these re-

sults in Cartesian coordinates yields the chart shown in Fig. 2.2.

Upon examining the chart, one arrives at the following conclusions:

a. The chart is symetrical about the a-axis and so are

the characteristic curves a2n and b2n+2 *

b. Characteristic curves a2n+l and b2n+l are .asymetrical.

c. "xcept for the ao curve, each characteristic curve inter-

sects the q-axis twice, i.e., each curve has two noros.

d. Two characteristic curves do not intersect.

2.4 General theory

We will now proceed tc analyse the silutions existing in the dif-

ferent regions of the chart of Fig. 2.2. In order to be able to arrive

at a complete understanding of the different types of existing solutions,

we must first discuss the general theory of Mathieu-type solutions

(functions), deducing the regions of stability and instability and there-

by arriving at the basic understanding of the mass filtering action upon

which the mass-spectrometer operates.

2.4.1 Solutions with period ti

The following discussion applies to any linear differential equat,..,

of the second order with single-valued periodic coefficients, an example

of which is the Mathieu equation in question.

If yl(y) and y2 (y) be any two periodic solutions which constitute

a fundamental system, the complete solution is

y - Ayl(y) + BY2(r) .

If the period of each of the solutions is ir, then



0
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yl (r+") and y2 y+17)

are also solutions. In accordance with the theory
5

yl(f) - ayl(r) + SyI2 (r)

y2(yY+W) ply1 (y) + A2y 2(r)

where 12I , 2 ' 1 ' 02 D are constants determinable from the con-

ditions at r - 0 may.

Thus

y(yr) - Ay,(y+vr) + By2(r+W)

a A I Cyl(Y) + z2 2 (Yr)] B pll (r)

+ P0 2 (Y)

m (m 1 + BO1) yl(r) + (M 2 + B02 ) Y2 (r)

If a constant 0 could be found such that

(AaI + BOI) I 0A and (A 2 + B02 ) = 0 B

then we can write

y(r-.n) 0Y(r)

or

A(G 1-0) + BO 0

giving

- A/B -

and

Aa2 + BO2 a OB

giving

- A/B =I a 2
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Thus
(P|'0) ____

2 al-0)

or

0 + £ p2) 0 + ( 2 - 2 01 ) o

a, # *2 # p, 2 could be easily determined from initial conditions,

heave obtaining the required values for 0.

Censiderimg Mathieu's equation, let the constant

0= e W  ,

where p is a nmiber dependent upon the initial conditions and the

paremetere ma and q.

Define also in general*

0(r) - 0e Lry(r,

which Incorporates the time dependence of 0 through r.

Thus

0(Yr") * o-(r4) y(r'.)

= eP(Y") 0Y(r) - e'Pr y(r) - 0(r)

so that

O0y) is periodic in r with period w.

Since y(r) is a solution of the type of differential equation under

consideration, it follows that spy 0(Y) is also a solution.

Ceuvlete solution of the equation

By virtue of periodicity iT, taking

0(Ur) - E a2r*r /

r

*The solution is defined in this form for easier anipulations since
Fourier expansion will be applied later.
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and

o(-r) - E C2rO e

r

In general, p = a + i$, a,P real and e 0(y) is a formal solution of

Mathieu's equation. Since the equation is unchanged when replacing

r by -Y, e" Pr 0(-y) is an independent solution, provided a # 0 or

when a - 0, 0 is nonintegral.

The complete solution of Mathieu's equation

E + (a-2q cos 2r) y - 0

is therefore

Ae4r E c2r e2rr + Be"py E c rea2ryi (2.6)
r r

A and B are arbitrary constants evaluated from initial conditions.

Upon examining the solution obtained, one can readily see that,

since the sumation terms are both periodic, the stability of the solu-

tion will depend on the value of 4. Three cases arise

1. p real: y(y)-coas 0-.c.

The first part of solution is, therefore, unstable and the

second part is stable. The complete solution is thus unstable.

2. g complex: i.e., 4 - a + iP and a # 0

so that

y(y) - co as y-c co (solution unstable).

3. t = io: we obtain the stable solution

y(y)AE c(2r+Plyi + BE c*2r-(2r+P),yi

r r

If is a rational fraction p/s, the sumation terms are

both periodic, with period 2sw.



When 0 in irrational, the solution is oscillatory, but bounded

and non-yeriodia, i.e., the solution never repeats itelf at

any time interval.

In actual applications, it is possible to arrange that p io

either real or imaginary, but not complex and that 0 p < 1

for oonvenienoe.

2.4.2 Solutions with period 2r

Take 2f to be the period of O(r), then

P(-") - P(W)

y(-fv) e - P 0 (-rr) and y(W) =ef (W)

so that

y() -• " v y(eV) = 0

Similarly

y'(r) - e 2 p' f y'(-,w) - 0

Substituting y - Ayl(y) + By2(r)

gives

A(yl(T) -e " 2pi yl (-r) + B (y2 (T) -e " 2 v y2(-V)) - 0

and

A(yl'(tt) -*" 24Try1 '(.,I)) + B (y.'(ir) -e " 2 g Y2 (-rr)) = 0

For A and B nonsero, we get

e 4py D e2pfr + 1 . 0
C
2

where

D - yl(-) y2 '(w) + yl(Y) y21 (-) -y2(-w) yl'(w) -y2(w)yl'(-rr)

and

C2 . y1 (T) y2'(rr) -y 2 ('r) yl'(w) - yl(-r) y2'(-rr) -y2 (-rr) yl'(-n)
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Thus

D
coshpw - D

This equation is also valid for period nt (n> 2). This equation

determines the value of 4 once the initial conditions are known.

To make 4 either pure real or pure imaginary (p - io; 0 < 0 < 1),

when the parametric point (a,q) lieu in certain regions of the (a,q)

plane, it is essential that:

In the solution y - ety 0(y), (y) should have a period of 2rr

instead of w. This follows from a close inspection of equation (2.6).

The results previously obtained are applicable if for v we write 2rr,

take

O(Y) c r+l 1e(2r+l)yl

r

and also change 2r to (2r+l) in all the infinite series.

The form of solution when t - ip; 0 1 1 is, therefore,given by

yl(y) - A E c2r cos (2r+p)y (2.7)
r

and

y2 (y) = B E c2r sin (2r+P)y , (2.8)
r

so that

y(y - A E c2r cos (2r+P)y + B E c2r sin (2r+o) .

r r

The initial conditions are substituted to determine the arbitrary con-

stants A and B.

2.5 Practical form of solution*

*This method is introduced at this stag, since it was found to be the
best method by which we could fully determine and understand the stable
and unstable region of the a-q plane.
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As previously illustrated, from the theory of linear differential

equationN one knows that the solution is of the type

y - Ae~r 0(r) + B-"r yt Cr) (2.9)

where A and B are arbitrary constants, p is a constant depending on

the parameters Oe and q of the differential equation. The functions

O(r), $& Cr) are periodic in r. For certain values of a and q, the

constant p vanJshes, and the solution y is then a purely periodic

function of y, but in general, p is different from zero.

While the general character of the solution from the function

theory point of view is known, its actual analytical determination

presents great difficulties. The chief Impediment is that the constant

p cannot readily be found in terms of a and q.

Whittaker6 has solved this difficulty by Introducing a new parmeter

in place of ae which ts denoted by* a. The parameter p whose value is

required, and the parameter a itself will be expressed in terms of a

and the parameter q, so that when *a and q are given, a could first

be found and then find p from a and q and ultimately obtain the solution

y of the equation.

As previously illustrated, the periodic solution of the equation.:

is a form of Fourier infinite series expansion. This form of series

suggests that they may be degenerate cases of a general solution of

Mathieu's ecqation, having the form

Yl = eOY u(y,a)

*Note that a is a parameter here and not the constant previously em-
ployed.
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where

u - sin(Y-a) + a$ sin (r-a) + s 5 sin(5y-a) + ....

+ a3 co (3y-a) + a5 co (Sy-a) + ....

where a in a new parameter.

Under this definition, the two solutions y1 and Y2 will correspond

to putting aL - 0, and a - r/2 respectively in the above general solution.

It is also observed that there is no term in cos(y-a), this really

constitutes the definition of a. The possibility of obtaining series

which remain convergent for all real values of a depends on our choosing

aL in this manner. The coefficient of sin(y-a) is taken to be unity, which

amounts to fixing the arbitrary constant by which the solution is multiplied.

Since a, q and a are interrelated, we assum

a - 1 + qf 1 (a) + q
2f2 (a) + q

3f3 (a) +- --.-.--

and

1 - qgl(a) + q 2 g(a) + q3g93 (a) + - - - - -

and take

u(,ya) - sin(-a) + qh1 (y,a) + q 2 h2 (ya) +-..

where

f, g are functions of a.

h are periodic functions of y, a (periodib, Iii.y).

Substituting these expressions in Mathieu's differential equation,

equating coefficients of q 0 , q1  , - - - - to zero and applying the

periodicity requirement we obtain the values for the f, g and h functions

and we find that*

*It is noted that the generality of the solution Is not affected by
assuming the sine series expansion, since the cosine series is incorporated
in the value obtained for "a" as shown.
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a - 1.q oos 2a+ 1 q2(_1+ 1 oo 4a) +  q3c2

16 3 32 32 3 128

-1q on 2a - )2 + qS(3

1 q n + q3 918 3 4

- -2 q( 2in 3 in i + con - -o"--"-- -i -4 2.0

I q (1 37 in 2a 12  vin 6a)jj~ ir4
"4096 q  9 sn 2

+1 5137 52 - G

S6 37 sin - L sin 8a) + .... (2.11)
16384 q 27' 1  4

1
i j q(-sin 2ai + 03)

Also

3" 1 6 2 5123 q 3 14 + 5 coo 4a,)

+4096 q 4 (- coo 2a + 7 con 6a,)

409696

caL 2 i 2 a q. 3 si a+1 q4 (-274 sn2
03 64 mn 5 12 q inG 4 0 96 q(- int

+ 9 sin 6a) + - - -

a 1 2 1 q3 1o4-12a +82003 4ti) L c --
5 m 9" q 1os+ 0q(. 54  27

1 3, 1 4
5  0 49152--"--

= -01 q 3 + I"- q 4on 2a + ....
7 9216 49152-7 1 q3 +1 q4

C " 3 q 4 9j in 2a + ....

35 4
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1 4s9 =737280

Ncte that "al is an even function of a while g is an odd function of a.

Thus the second independent solution of Mathieu's equation takes the form

Y2 
=  e'Pr u(y,a)

yl and Y2 constitute a fundamental system and the complete solution,

with two arbitrary constants, is

y - Ae4Y u(,,a) + Be".r u(r, -a) (2.12)

It is clearly seen, now, that when a- -IT/2 then 4- 0, c3 = c 5 - - - - 0,

and the series for "a" becomes that prevtously obtained for 'a " and

s i q 1 q2 1 3 11 q4
3 8"64 - 1536 q 36864

Substituting, we obtain the series for ce 1 (y,q). Similarly, when a - 0

we obtain the series for sel(y,q).

It can be shown that this form 6f solution will differ from that

previously obtained throu'- a constant multiplier. This is to be expected,

since the solution of Mathieu's equations must be unique.

2.6 Division of the (a,q)-plane into stable and unstable regions

Referring to Fig. 2.2 which shows the portion of the plane for

which the characteristic curves a., b for the Mathieu functions of

integral order have been computed, we will consider the region in

Fig. 2.2 lying between a1 and b2 .

The curve aI is obtained by substituting a - -t1/2 in equation

(2.10). Now, if a - -n/2 + iW then cos 2a - - cosh 2a whatever the sign

of e and so if q> 0 is fixed, equation (2.10) shows that "a" increases

with increasing e until b2 is reached. Now considering the curve b2,
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it has been shown7 that this curve is obtained by substituting a - 0

in the expression

a-4 2 q2 (!-! cos 2 - - - - - . (2.13)

If we let a - O+0 in this equation, it is seen that Oa" decreases with

increasing 0 until a1 is regained. Thus, between a1 and b 2, with q > O,

a is complex or imaginary depending on whether equation (2.10) or (2.13)

in employed.

Taking a = r +i@ and substituting in equation (2.11) for 4 in

terms of a. shows p to be imaqinary. (sin 2a - -isinh2g).

In the region between aI and b2, therefore, the solution of Mathieu's

equation is stable. In other words, for imaginary or complex quantitie

for a, starting from ] 2 and al, respectively, the solution in confined

to the region between these two curves irrespective of the value of 0,

thereby producing a stable solution.

We will how discuss the third possibility of values a could have,

viz., real values.

-Starting from b2 where a - 0 in ecation (2.10), taking a to be

real, for q > 00, "a" increases as a decreases until a2 is reached where

a - -m"/2. Since a is real in the intervening region, the series for

p will show to yield 4 real and hence the solution is unstable for any

point (a,q) in this region. Starting from a1 with real values for

a will also show that between a1 and bl, an unstable region exists.

Following along the lines of the above argument, it can e shown that

the region between a2 (a - -n/2) and b3 (a - 0) is a stable region.

It is thus possible to divide the (a,q) plane, for q > 0, into
sones in which the solution of Mathieu's equation corresponding to a
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point (aq) Is either stable or unr cable.

On* can also follow a similar argument for q< 0, by writing -q

for q in the previous series and hence divide the entire (a,q) plane

into stable and unstable regions. The result in shown in Fig. 2.3.

Conclusions

1. When the point (a,q) with q>0 liou between a , b i:

then p is imaginary and the two solutions of Mathieu's equation are

stab.Le.

2. When the point (a,q) with q > 0 lies betwfeen b. , am

then pi is real provided the appropriate form of solution is taken &.4

the complete solution of Mathiou's equation is unstable.

2.7 Form of solution for diflorent regions of the (aq) plane

1. Stable solution:

a. q small and positive*

When (a,q).lies between a 2n , b 2n1, for the first solution,

we take

yr)- oe C 2r*2y ewp 2 r (r (2.14)

r

or

yl')- E 02r 003 (2r+P)ry (2.15)
r

or

yl(r) - 0 iPr sin (2nr - a) + 5a 2 n (2-r-a)

+ 5 4 sin (4y-a) + - - - -

+ c 2 coo (2y-a) + c04 con (4y-) + --- ,(2.16)

*This solution is practically suitable for the case when q is small, i.e.,
the series converges rapidly.
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there being no term in coo (2ny-a), e.g., if n-1, c 20.

In these series, 0 is real and 0 < < 1. The coefficients

0 2r ' a2r are obtained as shown previously.

When (a,q) lies between a2n+l I b2n+2 , the first solution is

taken as

i e(rly er¢rly

yl(r) i  Y E 0 2r+l *(2r+l)yi -
0 r0  1(r) (2.17)

r

or

yi(r) c 0 2r+l coo (2r+l+0)r (2.18)
r

or

Y1(r) - Sior s in ( (2n4.l)y-a) +as1 sin (r-a)

+ $ sin ($y-a) +- --.---

+C cos (y-G) + 03 cos (3y-a) + - - -] , (2.19)

there being no term in coo [ (2n+l)y-aJ , e.g., if n-l, c 3 0.

The second solution in obtained by writing - r for y in (2.14)

and (2.17), sin for cos in (2.15) and (2.18) and - for 0, - a for a

in (2.16) and (2.19).

When the initial conditions are specified, all forms of solution

yield, naturally, an identical result since the solution is unique.

b. q moderate and positive

SaMe as (a) except that the form represented by equation (2.16)

and (2.19) is usually unsuitable for computation when q> 0.4

approximately.
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2. Unstable solution:

a. q mall and positive

When (aq) lies between a2n+2 I b2n+2 the first solution is taken

yl (Y) 01Y t * *2rri . e Y 02r (y)
r

or

-ep' sn (2ny-G) + '2 sin (2r-) + s4  sin (4Y-) + - - -

+C2 co (2-a.) + 4 0o (4-) + -. - - ,-J

where pt(ral)> 0 and rm&rks.in,l.(a) apply.

When (aq) lies between b2n+l , a2n+l , the first solution

is taken as

- * 1 0 * (2r+l)yi ePly 02r, 1(r)
r

or

yl(y) - e [sin ((2r+l)ry-) + '1 sin (y-G)

+ a 3sin ($y-a) - -....

+ C1 cos (Y-C) + c 3 cos (3y-a) + - - J

Note that the period of 02r(y) is IT, while that of 0 2r+l(y) is 2n.

b. q moderate and positive: as 1.(b).

3. Anysoltion forQ <O

Replace y by (rT/2 - y) in the solution for q > 0. In other words,

the obtained stability regions are applicable to negative ions

also in the mass-spectrometer.
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2.8 Mathieu functions of frastional order

In general the operating point for a defined ion mass will lie

within the region* of stability (or unstability). Also, the solutions

corresponding to operating points lying exactly on the (a) and (b)

lines are quite critical and are therefore not quite adequate for mass-

spectrometric purposes. Therefore, we will discuss in thls section

the solutions of fractional order.

A Mathieu function of fractional order p is that which satisfies

Mathiou's equation and reduce* to cos py or sin pr when q - 0, i.e.,
n2 W P2 .

In this case p is real, positive and either rational or irrational.

Assuming

ce (yq) - cos Py + E qrCr(r) (2.20)
r

so (y,q) - sin py + E qr r(Y) (2.21)
r

a 2 + E Arqr

r

and proceeding analytically in the same manner as in section 2.3 we

obtain the following results

(,q) c cos ( coo (-)

p 4 ( + 1)P-1

+ 1 q coo (o+4) + ( - 4)
+2 (P + I) (P +- (PO- 01 (r " 2)

I qS 3 o 2 + 4 o + 7 oo (o + 2,
1 2 (0 - 1) ( P + 1)$3 ( p +  2)

2 3

( a:_ 4 p + 7) cos (P - 2-

(p 4 1) (P + 1) (p- 1)3 (p - 2)
+ co + 6)y 0os 6 ( +

UP + 1) (P + 2) (p + 3) " 3-7- 2) o 3
(2.22)
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so (r,q) - girt Pr - 1 q gn(0 + gin" (0

+seq 2 gin ( +4)I~ sin (oA .2

(P + 1) (P + 7 + (P -+-- 2.2)

a-p 2 + 1 q2  + (5P 2 + ) 4

2(p 2 - 1) 32 (p= 2- 1)3 (p - 4)

+ 9 04 + 53- 2 + 29 6 ------ (2.24)
64(p - 1) (p2 - 4) (p2 - 9)

Thee formulae are suitable for computation when q /2(P 2 - l)« p2 , P> 0,

i.e., the series converges rapidly. Since 'al has the same value for

beth solutions, the complete solution becomes

y A c . (r.q) + B se, (.,,q) , (2.25)

where A and B are two arbitrary constants and p is non-integral. Also

note that in this case: p - m+P.

2.9 Applioation of the previously outlined theory to the mass-spectrometer

In the mass-spectrometer case, we are dealing with two Mathieu dif-

ferential equations simultaneously, describing the motion of the charged

particles in the x and y directions as previously shown. The require-

ment i-i thus, that both solutions (in the x and y directions) be stable

simultaneously.

Let us now proceed to analyse the equations simultaneously.

d2d-1 (a +2q cos 2y) x- 0 (2.26)

and

d-l - (a + 2q cos 2y) y - 0 (2.27)
dr2
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Apart from the phase shift, the difference between the two equations

and the normal form is the fact that &e in equation (2.24) is negative,

i.e., the equation of motion in the y-direoction results from substituting

(-a) in equation (2.27) (and the phase shift which has no influence on

the stable or unstable properties of the solution). Referring to the

(a,q) chart of Fig. 2.3, which shows the regions of stability for the

solution of Mathieu's equation, we observe

1. Equation (2.26) for the x-direction motion has Ial> 0 and

hence the stable solutions of this equation are confined to the upper

half of the chart.

2. Equation (2.27) for the y-direction motion, has "a'< 0 and

hence the stable solutions of this equation are those of the lower

half of the plane.

One can now easily determine the regions where both solutions are

stable by simply folding the plane about the q-axis. Several regions

of stability are obtained, the largest of which is that bounded by the

q-axis, the ac curve and the b1 curve. This region is that which

determines the operation of the mass-spectrometer and is hence of

greatest interest to us.

The first step will be to plot this region ore accurately using

the formulae for a and b1 obtained previously.

1 2 +7 4 29 6 68687 8 10
ao - - q 18 q - T- q 18874368 + O(q

and

1 q2 +1 q 3 1 5 6

1  q 61536 q +(q)

Since, in this region O< q < 1, one can neglect terms in powers of
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q>4 in b1 and power of q> 6 in a0

Thus

a 1 q2 7 (2.28)

and

bl . 2 q 1 2 + q 3 1 q4 (2.29)

A plot of equations (2.28) and (2.29) is shown in tig. 2.4 in which

we distinguish four different region#,

Region 1: Solution for x stable, solution for y unstable; thus

a region of unstabl-i particle motion.

Region 2: Bo,:h x and y Solutions stable. Hence, when the operating

point lies in thim region, the particle motion i stable.

Region 3: Solution for x and y unstable; thus motion unstable.

Region 4: Solution for x unstable, solution for y stable; thus

motion unstable.

We conclude that, if the parameters (U, V, a, w, r0 ) for a specific

particle of mass a are such that the operating point lies within region

2 of the stability diagram of Fig. 2.4, the motion of the particle is

stable and hence it will pass through the quadrupole field attaining

a finite amplitude of vibration and could thus be detected at the out-

put of the mass-spectrometer. If the operating point lies outside

regicn 2, the particle will oscillate with exponentially increasing

amplttudo and will eventually be lost at the electrodes. This is the

principle of "mass filtering' upon which the mass-spectrometer operates.

Referring to the original equations of motion of the ions, developed

in section 2.1, we defined 'a" and q as follows:
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a = -- U 2 (2.30)

and

q W ------- (2.31)mr 2

where

U - amplitude of applied do voltage

V - amplitude of applied rf voltage

* = electron charge

w M rf frequency

ro  W field radius

m M man@ of charged particles

It in observed that the ratio a/q - 2U/V represents a straight line in

the (a,q) plane in Pig. 2.4, and passing through the origin with slope

2U/V, therefore, independent of the mass of the particle. In other

words, for a met ratio of U/t, the operating points for all masses from

0 - co will lie on a straight line through the origin. It is thus

evident that only these mass values which lie in region 2 of Fig. 2.4

will have stable solutions and hence, could be detected at the output

of the spectrometer. As the line approaches the vertex of region 2

(slope increased) the number of masses related to ions having stable

orbits is decreased.

The slope of the line, i.e. 2U/V, thus determines the resolution

of the mass-spectrometer.

We will now consider region 2, the stability region, in more

detail and discuss various important parameters pertaining to the

motion of the stable ion orbits.
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We have shown that 4 - ip in the stable region and referring to

section 2.4.2, the general solution of the equation of motion for the

charged particles in this region is*

x(y) - A E c2r cos (2r + O)y + B E C2r sin (2r + O)y (2.32)
r r

or (0 < 0 <1)

x(wt) = A E C2r co (r+*P2) wt + B E c2r sin (r+0/2) wt. (2.33)
r r

It is to be noted that A and B contain the initial conditions,

i.e., the injection conditions of the ions, whereas the coefficients

C 2r and 0 depend only on "a" and q. Thus the paths of all ions of the

same mass differ only, in their motion, in the constants A and B

corresponding to the difference in their initial conditions of in-

jection, viz., xo, iO to, where 0 is the initial velocity. They

all have the same frequency spectrum of vibration w = Ow/2, w, = (1-0/2)w,O0

2 M (1+5/2)w etc.

Ions of different mass have, on the other hand, different values

for the coefficients c 2r and D due to their different operating points

in the stability recrion. The frequency spectra of their motion, and

especially the fundamental frequency w 0 - f/2 are, therefore, different.

2.9.1 Tso-O-chart

Peferrinq to Fio. 2.2, it is noted that when the nara-

metric noint lies in a stable region, equation (2.24) of

section 2.8 may be adapted to calculate 8O When q> ,as

*We are only going to consider from now on the soluition of one of the
two equations of motion since the stability is not affected by the phase
of injection.
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is the case and if the curves bounding the region are a (lower),

b+l(upper), a> 0, we take p - m+P and from (2.24) follows

2 1 q 2 __(502 + 7_q 4p a- . ...

2(p2 - 1) 32(p2 . 1)3 (P2 4)

29 04 + 50 o2 + 2 q6 + O(q) (2.34)
64(p 1), (p -4) (p -9)

As mentioned previously, this formula is usable under the condition

that lal I q 2 /2 (p 2  . ) and that the ratio of each of the terms

in q2r to its predecessor ts small. For a first approximation we have

P = a. Inserting this i the term in q2 and omitting the others, the

second approximation is

q 2 a 2 (2.35)

Substituting from (2.35) into the socond term on the rigbt hand side

of (2.34) and P - a in the third and fourth, yields the third ap-

proximation

p2 a- (2 (5a+7) 4

2(a -1) 2 _ q 232(a - 1) (a -4)

. 9a 2 + 58a + 29 q6 . O(q8 )
64(a - 1)5 (a - 4) (a -9)

2 2
Sine p =(m + , we obtain

2(a - 1)( q4 2 " q

2(a-1) 2 - 2  q 32(a- 1)3 (a -4)

9a2 + 58a + 29 6
5( q -m65(a -1) 5 (a- 4) (a -9)
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provided no denominator vanishes.

When the above conditions do not apply, 0 may be calculated using

the continued fractions method as described by MoLachlan.
3

In our case, the region of interest for the operation of the mass

spectrometer lies between ac (folded) and b1 of Fig. 2.4.

Consider region 2, the region of stability of the solution to

Mathien's equation, i.e., the region between ao (folded) and b1 . In

this region 0 ( 0 < 1 (P - m+P),we proceed to calculate for any assigned

P, say 0.6, the "a for q increasing from sero in small steps, and the

points plotted give the characteristic curve 0 - 0.6. By c..liting a

series of curves at intervals of, say, 0 - 0.1, we can plot an iso--

chart of the type depicted in Fig. 2.5.

These iso-O lines will prove very useful in analysing the line

form of mass peaks as vill be shown later. It should be noted that

one could proceed in a similar manner to obtain the iso-p lines in

the unstable regions of the solutions of Mathieu's equation.

2.9.2 Injection conditions and maximum amplitude of vibration

It was previously mentioned that the st bility of the path of an

ion in the spectrometer depends solely on the operating point (a,q)

and not on the ion's injection conditions. But for a stable ion to

reach the collector, it is evident that the amplitude of its vibration

must remain smaller than the distance r of the electrodes from the0

field axis, i.e., xma x , Ymax <r. Since the maximum amplitude of

vibration depends on the operating point as well as on the initial

conditions of the ion motion, the influence of the injection conditions

must be investigated.
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The maximum amplitude, obtained from equation (2.33) in the

previous section is found to be

x~max. \/A +B E 102r (2.36)

r

One should note that, in spite of the fact that the solution

x(y) is not exactly periodio, after only a few vibrations, the actual

vibration amplitude very closely approaches xmax .8

The calculation of A(ro , x , 1 ) and B(yo , x° , io ) is based0 0 0

on using the basic systems of solutions x1 (y), and x2( r), i.e.

x(Y) - AX1 (y) + Bx2 (Y) - (2.37)

Differentiating (2.37) with respect to y, and inserting the initial

conditions (x , (-) y "o) in the equation and substituting in

equation (2.36), we get

W[( *cx 2 (y') - x '*x rd) 2I X - • - c 2 0

+ (X0'. X1(yo) - x0. xol'(°)) 2  1/2 (2.38)
dx

where W is the Wronaki determinant, and x' - dr "

For any given phase of injection y0 , xl(yo) x2(Yo), Xl'(-o)'

x2 '(Yo ) are constants and the quantity under the radical in equation

(2.38) is a fourth order expression in x and x 0
1 . Equation (2.38)

represents an ellipse in a (x0,x0 ') plane. Setting xm - r0 , this

ellipse connects all points (Xo0 x') which, for fixed r"o , have the

same maximum amplitude of vibration ro . For different phases of in-

jection, a family of ellipts, with the parameter y0 , is obtained.
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Calculations for .- 0 and 0 = 0.2, 0.5, 0.8 were carried out
S

by Fischer. The results are presented in Fig. 2.6.

It can be seen that the maximum amplitude r0 is larger than the

initial coordinate for all phases of injection except Yo - w/2, where

they could be equal. Thus, even in the center of the stable region, i.e.

with best focusing, only a certain portion of the total field cross

section can be utilized for the injectiop of ions.

Injeoction varallel to the axis
x y

It is observed that the maximum amplitude - ,--Y are single
x 0 YO

valued functions of 0. This makes it possible to construct lines of
xu YN , instead of iso-0 lines, in the stability diagram as

equal ;- - inta o s"o ° Yo
shown in Fig. 2.7. Settig xI - ro, then xo0, y represent the greatest

distance off the field axis at the point of injection of the ion of

stable trajectory, at which this ion, with the specific position of the

operating point in the stability region, can still traverse the quadrupole

field, whatever the ion's phase of injection may be.

As the operating point is moved along the mass line into the stability

region, an increase in intensity will result, beginning at the limit of

stability, since as the distance from this limit increases, even the

ions entering the field farther away from the axis will be focused

(allowable x0 , y0 increase towards the inner part of the stability

diagram).

It is thus possible to attain 100% transmission provided the

injection diaphragm is not too large. When the second limit of stability

is approached on the mass line, a decrease of intensity will occur. The

resulting observed mass peak, in this ideal case will be a trapezoid

with sides of unequal slopes and a flat top representing the region of
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100%. tranmilumin. It is seen that this case could only be achieved

at low resolving powers and/or small diaphrags. At high resolving

powers, the line form changes to triangular, the intensity thus do-

creases and is Inaorsely proportional to the resolution.

It has been shown that for a speitfled Pxy and sotting xm = ro

there is an upper limit for x0 yo - f(wto ) for which the ions can still

traverse the quadrupolo field. By avoraqdng over all phases of injection,

ono obtains the probability that a "stablo ion having initial conditions

x. ' yo Uo - fo - 0) can traverse tho field. It is found that this

probability decreases very rapidly above a certain value x° , y0 which

are a function of 0 and to.

2.9.3 Rosolving power

It was previously mentioned that the resolving power of the instru-

ment is mainly determined by the slope of the lino of operation. The

resolving power can thus be increased through increasing the slope of

this mass line in the stability diagram by appropriately choosing the

ratio U/V; this displaces the operating point higher into the upper

corner of the stability "triangle". This mans, however, that the

operating point will approach very closely the limit of stability, with

a resulting unavoidable increase in the maximum amplitude of vibration

of the stable ions.

In order to gain a quantitative appreciation of this effect, the

maximm amplitudes of vibration of ions, having definod initial con-
8

ditions, were calculated numerically by Paul, et al, with specific

reference to the position of the operating point. They found that for

a resolving power above 70, only the region 0.69<q <0.71 and

0.23a<.24 is of interest. They assumed that, in this region, the
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stability boundaries and the Iso-p lines in the stability diagram

could be approximated to straight lines (Fig. 2.7). The vertex of

the stability triangle lies at

qlinit w 0.70600 and a limit = 0.23699 -

Paul et alhave also calculated the relation between a and Ox  y

for a value of q - 0.70600, whete

Ox " corresponding tO the x-direction vibrational notion

and

py w p corresponding to the y-direoction vibrational aotion.

The relations obtained are:

(1- x) 2 - (0.23699 - a)/1.93750 (2.39)

and

y 2 . (0.23699 - a)/0.79375 , (2.40)

Equations (2.39) and (2.40) establish a relationship between the

position of the operating point (a,q) and the respective characteristic

exponents P1 and y . Paul, ot a]., have also calculated the values for

the coefficients c2r , using the continued fraction expansion
3'9

c 2 r -q/(2r+D)2  2 2 /(2r+A)2 (2r+2+0)2

02r-2 l-a/(2r+o) 2  l-a/(2r+2+0)2

. 2 1(2r+2+B) 2 (2r+4+0) + ....

l-a/(2r + 4 + p)2

with the normalisation c = 1.

Equations (2.36), (2.37), (2.38) enable us to obtain the maximm

amplitudes of ions having stable trajectories in the x and y directions
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for different positions of the operating point 0, an a function of the

two sets of initial conditions (wt 0 , % i ) and (wo ' Ye ' fo ) "

Paul, et aL3, have carried out the calculations and the results are

represented in iiv. 2.8.

Fig. 2.8a shows the results obtained for injection parallel to

the field axis, i.e.,

O a f0 -0 and x , yo #0

Fig. 2.8b shows the case of injection at the field axis of ions having

radial velocities, i.e.,

X " y - 0 and o , fo # 0,

One can conclude from the curves that x. and Y increase in inverse

proportion to 1-0 x and Py respectively.

We will adopt the conventi6n of using the half width ba of a

mass peak at a as a measure of the resolving power as shown in Fig.

2.9. Paul and Raether10 have obtained an expression for the resolving

power in terms of the parameter Ma' when q - 0.706. Their results

could be numerised as follows:

a) For low resolving powers, where Am is practically equal to

the total line width

La- 0.178 (2.41)

Am 0.23699 - ao.7 6  (q - 0.706)

where a0 .70 6 is the value of e at q - 0.706.

b) For high resolving powers, where the peaks beame triangular

in shape

M 0.357 (2.42)
Z; 0.23699 - a .7 0 6
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(A is equal to half the bass width approx.). Combining equations

(2.39), (2.40), (2.41), (2.42) a relationship between 0, x , ym

and the resolving power was derived for injection parallel to the axis

for high resolving powers

Xm Ya < 1.$ (alia) 1 / 2 (2.43)

It is, therefore, concluded that the maximum amplitude increases

only as the square root of the resolution; this in of importance when

one desires to increase the resolving power.

One also obtains from equations (2.39) through (2.42) and Pig. 2.4

the admissible radial velocities of 'stable' ions for injection at the

axis
Aa 112,

IT < .16 r ( ) (2.44)

The ions of different masses are required to remain a certain

nwber In' of high-frequency periods ia the field in order to ensure

that the amplitude of the "unstable ions will attain a value larger

than r0 , and hence be eJliminated at the electrodes. This number In'

is a function of the desired resolving po-er and sets an upper limit

to the admissible injection velocity of the ions. rt was found oxperi-

mentally that, for resolving powers around 100

n at 3.5 (m) 112 . (2.45)

This requirement introduces the relationship between the length L

of the maos-speotrosmter tube and the accelerating potential. This

was found by Raether10 to be

L > r rT (--acc) q
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where U aein the acitlerating potential. This sets a lower limit to

the length of the tube for practical accelerating potentials.

2.9.4 Stability and accuracy criteria

The behaviour of the sme-spectrometer is determined largely by

the position of the operating point In the stability diagram. It in

thus required that the parameters we' and q be stabilized to approximately

lI(2m/ts)of their value.

It follows upon examinincz tse expressions for "'la and q that U

and V, the dc and rf frequency voltage amplitudes respectively, be

stabilized to better than 1/2m/Am of their value. A!--, the limitations

on the frequency wa and the field radius r 0are more severe Aince they

appear in the vxpression for 'a' and q raised to the 2nd power.

Short spa"Aally limited inaccuracies of r 0 , however, cannot

essentially influence the stability behaviour of the ions, since a

displacement of the operating point in the stability diagram can only

be caused by field defects which are operative for many high-frequency

periods.
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Chapter 3

Desian Caloulatiens

In this chapter the calculations of the various parameters in-

herent to the mass-spectrometer will be presented. The choice of the

parmeters will be discussed in terms of the requirements set by the

planned experiments.

3.1 Resolving power considerations

One of the great advantages of the quadrupole-type mass-spectrometer

is, as mentioned previously, the ease by which the resolving power can

be changed if necessary. A constant resolving power, on the other hand,

is possible irrespective of the mass of the ion to be analysed.

In the study of basic collision processes in plasmas, besides

identifying the ions through mass analysis, the efficiency of the mass

analysing instrument is of prime importance since it is desired to

detect ion currents of very small value (of the order of 10" 18 amps).

The design of the mass-spectrometer was, therefore, based on maximum

efficiency and not on constant resolving power; the only 'resolving"

requirement being that the peak at a certain mass is not affected by

the presence of neighboring masses. Theoretically, this means that the

condition

as illustrated, in Fig. 3.1, has to be satisfied.

Here

m - mass to be analysed

am - curve width at 1/2 the height.
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In conclusion, to obtain maximum collecting effiolency, the re-

solving power will have to be decreased at low masses for the following

reasens t

1. At high resolving power, the intensity of the ion beam

current is inversely proportional to the resolution.

2. AoeeletatiRW potential considerations.

The mass spectrometer is planned to operate in a mass range of

1 to 125. The field radius ro was chosen to be 2 om. This choice

was based on obtaining a compromise between the power requirements

(increases with re4 ) and the increase of tolerances in initial con-

ditions with larger ro.

3.2 Quadrupole voltage and frequency calculations

Expressions for the required ac and dc voltages could be obtained

from the parameters "a" and q as followst

The expression for the rf voltage amplitude V follows from

q . 4 0eV

or

m r 2,w2 qV - r

Substituting

o = 1.601 x 10"19 coulomb

m-9.107 x 10"31 x 1836 x A kilogram

q = 0.706* #

*The calculations are performed assuming the operating point of the mass
spectrometer to be at the vertex of the stability triangle (a - 0.23699;
q - 0.706), i.e., the resolution is assumed to be infinity (ideal).
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we find

V - 7.287 r0
2 f2 A volts (3.1)

where

ro is in am

f is in N/s

A is the atomic weight of the ion.

The expression for the do voltage U is determined by

a 2U - 0.239

or

U - 0.16784 V

so that

U - 1.223 r0
2 f2 A volts * (3.2)

Choice of Freauency

The mame selection is obtained through varying either the frequency

or the voltages or both. In this spectrometer, both the frequency and

voltages will be varied in order to stabilise an ion with specific mass.

The frequency will be changed in steps, thus determining the mass range

and the voltages will select the masses within the met range.

It is to be noted that the rf and do voltages should be varied

such that the ratio between then remains constant (U/V - conet.) for

maintaining a constant resolution of the instrument. The reason for

the simultaneous monitoring of frequency and voltage is based upon the

high-frequency power requiremnts and the desired mass range.

The high-frequency power requirement for the quadrupole system

was calculated by Paul et al. 1 The following expression was obtained:
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N 6.5 x 10- 4 x C A2  f5  r watts, (3.3)

where

N = power required in watts

C c capacity of the system in xpf

A = atomic weight of the ion

f = rf frequency in Mc/*

ro - field radius in a

Q = quality factor of the output circuit.

It in observed, at first glanes, that the reqaired power is a

function of the fifth power of the frequency". Since the aim is to

achieve a wide mass range with reasonable power and voltage require-

ments, as well as rcsolution, a detailed investigation of the behaviour

of power and voltage with atomic mass and frequency is necessary.

With

ro = 2 ca., substitution in equation (3.1) gives

V - 7.287 x 4 x f2 x A

- 29.148 f2 A volts . (3.4)

The capacity of the system is found experimentally to be ap-

proximately 100 ppf and when choosing a reasonable value for Q

*This is only a first order approximation since the dielectric constant
of the system changes with the introduction of the charged particles and
thus with frequency. The equivalent dielectric constant

k 1 - n 2  ; the actual expression for power will be:
m° }

N =1 A f . 2 Af where c1 and c 2 are constants.
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(100 say), we get

I - 6.5 x 10" 4 x 1.0 x 16 A2 f5  watts

- 1.04 x 10"2 A2 f5  - (3.5)

A plot of required voltgs and power versus atomio wighbt A for

different freqencies is shown in Mq. 3.2. It follows imediately that

in order to attain a wide mass selection ranq with reasonable ranges

of rf vkltaep and power, one should use as low a frequency as possible.

It is not possible, however, to use very low frequencies, since, in

this ease one has to increase the length of the spectrometer tube and/or

decrease the accelerating potential for the Ions in order to fulfill

the condition that the WvibratlgW ions should remain a definite

nder of high frequenoy periods in the field to obtain satisfactory

resolution. This point will be discussed in detail in section 3.3. A

ompromise was made and the length of the tube was taken to be 100 ca.

The required frequencies are thus

0.5 Nc/s to oever the ms range 125-50

1.0 No/s to cover the mass range 50-12

2.0 YA/s to cover the mass range 12-1,

Under these conditions, using equation (3.4) and (3.5), we find that

the required rf power will vary between the approximate limits of 50

watts for A - 12 and a few tenths of a watt for hydrogen.

The required rf voltage V will hence vary between 1450 and 116

volts. The plot of V versus atomic weight A, shown in Fig. 3.3 will

serve to calibrate the instrument.

3.3 Determination of maximum ion acolerating potentials

The accelerating potential applied to the ions entering the

spectrometer determines, for a fixed tube length, the number of high
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frequeny periods the Ions remain in the quadrupole field since there

is no field force directed along the axis of the tube. With reference

to chapter 2, the minimam amber of high frequency periods necessary to

ensure eamplote lose of unstable ions at the electrodes and hence good re-

solution was found experimentally to be1

n -- 3.5 (1-)1 2

Henoc, the drift time of the ion through the field must be larger

or equal to n high frequency periods. We will now proceed to obtain

an expression for the maximum allowable ato~lorating potential from

the above relation.

The velocity of a singly charged particle in terms of its energy

in electron volts is given by2

V 5.93 /2n07  u1 12 olm,

(A

where

u Is the energy in electron volts

a is the mass of the hydrogen atom

a is the mass of tl e electron

A is the atomic weight of the particle

3- 1836

Total time needed for n high frequenoy periods is

10-6
T a F;- n

Minimm time of ionic flight through the quadrupole field

Tt 10" 6 ( 1/2 sec.Ttotal = VA An
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so that the maximum allowable vldt 7 of ions is

10 L 108 Lf (a) 1/2 a/.Va , 3.5 a ) I
total s a

where

L is the length of the field in motors

f - frequency of applied voltage in M/a.

Hence

108 L l 5.93 x 107  u1/2
10 (1836 A) 1 2

so that the maximm accelerating potential Ot is given by

(l0Lf 2
ax -T3.5 x 5.93) x 1836 A

or
0 .ax = 4.26 x 102 L2 f2 A volts

The advantage of lowering the resolution when analysing low

mass values is again evilent. It enables the use of a shorter tube

length, while maintaining an appropriate value of accelerating potential.

Moreover, it avoids, the bulkiness of a larger tuq ', hence, cutting down

the pumping and bakeout requirements. For L equal to 1 meter, we have

- 4.26 x lO2f2A an

The resolutions chosen, and hence the resulting required accelerating

potentials for the three different mass ranges are as follows:

mass range: 1-12 12-50 50-125

resolution: 1:100 1:250 1:250

maximum accelerating
potential in volts: 18-216 20.5-85 21-53
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A plo, of acoelerat'ng potential versus atomic weight A is shown in

Pig. 3.4.

When we take the minimum condition for the resolving power, i.e.

we obtain

mamx - 213 L2f2  volts .

The smallest frequenoy used is 1/2 Me/s, so that for this frequency

om. - 53 L2  volts

It is seen that the choice of a length L smaller than 1 meter would

give rather low and impractical values for the maximum allowable ac-

celeration potential.

3.4 Calculation of do voltage requirments

It was shown previously that the ratio

dc aoolied voltaue
r appliod voltage determines the resolution of the masn-spectro-.

mater. In this case, the resolution is variable in two steps 1:100

for mass values 1 to 12 and 1:250 for mass values 12 to 125.

At q - 0.706, the relation between the resolution and the values

of la, for high resolving power, as is the case, was given in chapter

2 as

m - 0.357
S0.2369 - %.7 0 6

StopI

100 0.357

.23699 - a1)- o.706

so that

a (1) = 0.23699 - 0.00357 - 0.233420o.706
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Thus

u(1) a(1) 0.23342 = 0.16531
S 2 x0. 706

Substituting the range of variation obtained for V, we find that

U( 1 ) will vary from 20 volts for hydrogen to 240 volts for A - 12.

Stop II

a 250 0.357

0.23699 - a0 7 0 6

(2) = 0.23699 - 0.001428 - 0.23556

Thus

U( 2 )  a ( 2 )  0.23556 - 0.16683

V 2q 1.412

U(2 ) will thus range from 63 volts for A - 13 to 243 volts for A = 50

and from 60 volts for A - 50 to 152 volts for A - 125.

3.5 Maxim=m allowable radial energy of the injected ions

The variation of the allowable radial energy with the 'off symetry

of the injected Ions waa discussed in detail in chapter 2. The relation

/ was illustrated to be of an elliptic nature and was sumarised in Fig. 2.6.

From the practical point of view, however, we will limit ourselves to

the case of injection at the field axis and use the expression obtained

by Paul et al. for determining the maximum allowable radial energy of

the ions, namely

u -Y l / electron volts,rmax  I5(u/A-)

where V is the rf voltage amplitude.
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This quantity represents the largest amount of radial energy a

'stablo, ion i allowed to possess while still being focused by the

quadrupole field. This point Is very Important in designing the ion

source for the attainment of the high degree of sensitivity and col-

loction efficiency required in the present instrument. Since this con-

dition Is proportional to the applied rf voltage, it becomes most severe

in the oase of hydrogen as in this case
P

V = 116 volts

so that

ur116 0.075 electron volts.
rax 15 x 100

It is seen that this value is rather mall, approximately twice

the thermal energy of the ions at room temperature. This value, however,

is by no means obstructive since the ion source to be utilised with the

spectrometer is a diffusion type in which the ions diffusing out of the

gaseous plasma are essentially thermal. The ion source will be discussed

in detail in chapter 5.

The excellent feature of the quadrupole mass.spectrometer, namely,

the variable resolving power facility, again proves to be very advantageous.

The maximum allowable radial energy could be greatly increased by lower-

ing the resolution. It was shown that a practical resolving power of

S ) 2m is sufficient for the studies planned.

Inserting this in the expression for u , we getrm.x

V
r I x 2m

and from equation (2.4)

V - 29.148 f2 A volts,
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so that

u f 2.148 f2 f2 electron volts,rmax  30

where f is in Mo/s.

It can readily be seen that, in the case of low masses, where a

frequency of 2 Mc/s i employed, the ion is allowed to have a radial

energy of 4 ov and will still remain stable in orbit and thus efficiently

detected.

3.6 Sumary

Mass-Syectrmfeter Specifications

r:s 2ca
0

lengths 100 am

mass range: 1-12 12-50 50-125

frequencyt 2.0M /s 1.OMC/s 0.5MCe/

resolving power: 1100 1:250 1:250

rf voltage: 116-1400 380-1457 364-910

power consumption: 0.6 - 50 watts
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Chapter 4

general Descriytlen and Outline of -he Mass-Sectrometer

In the following chapters, an attempt will be made to illustrate

the different problems that were encountered in the construction of the

mass-spetromster and the effort$ to solve them.

A block diagram of the complete mass-spectromter in shown in

Fig. 4.1. The ions produced in a gas discharge tube are allowed to

diffuse out of the plasma through the glass wall via a small hole

having a diameter of 25 microns approximately. The appropriate ac-

celerating potential is then applied to the ions using a double grid

after which the ions enter the quadrupole field. The output of the

quadrupole field, vi., the mass analysed ions are then focused, using

a simple electrostatic lens, into the first dynode of the ion multiplier.

The focusing is required at this stage, since the effluent ions oscil-

late in the quadrupole field and hence have a wide exit angle. The

signal current output from the ion multiplier could either be dis-

played on an oscilloscope or be integrated through a vibrating reed

electrometer and the mass peaks recorded on a strip chart recorder.
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Chapter 5

The Ion Source

It was previously mentioned that the mass-upectrameter will be

used in a careful study of the basic collision processes ':n*r n * in

active, as well as in decaying plasmas.

The ion source, and the Associated gas handling system are shown

in Fig. 5.1 (a,b) consists primarily of a gaseous discharge tube (A),

about one inch In diameter, filled to a well-defined pressure with the

gas (or mixture of gases) to be studied. The high voltage applied to

the tube produces a discharge thus ionizing the gas. A small hole

(B), approximately 25 microns in diameter permits the ions to diffuse

out of the tube; these ions are then required to be mass analysed by

the spectrometer. The gaseous discharge tube is enclosed by a stainless

steel cylinder which is sealed to the fore end of the spectrometer via

a gold ring-flange vacuum seal. The two ends of the gaseous discharge

tube extend out of the cylinder via glass-kovar metal seals. One end

is sealed off and the other connects via a "Granville-Philips' Type

C ultra-high vacuum metal valve to the pump and gas handling system.

This system consists of a 'Consolidated' three stage oil diffusion

pump which is air cooled and backed by a 'Conco high vacuum rotary

mechanical pump. The diffusion pump employs Ootoil-S fluid.

The system is baked out at 350°C for approximately 12 hours and

pumped down to a pressure of the order of 10 9 ma Hg in order to ensure

that the discharge tube is sufficiently clean before admitting any gas.

The valve is then closed and the gas to be studied is introduced from

the gas bottles into the discharge tube via a leak valve (C) which is



M j)
WW

w
o

0

c 
I 

O

N w

00

/w N

2N iu

< z 0

4. 0

CD IL ILO

0nC

(1,zJ

0 z IV,



U n wJ
gJJ 0 49 >.

I0 01 >1

0 C

w 4

Nr W4 (D

ow a.0 o

w~ 0.- a
lo- v

ww

< 0

w I -

L- I CO

I 00 a
414W

0
(j0

U



- 58 -

adjusted so as to maintain a constant gas pressure inside the discharge

tube. Two Zeolite traps, (D1 and D2 ) are placed between the diffusion

pump and the discharge tube which serve to absorb the oil molecules

which are streaming back from the diffusion~pump. A special type of

oil manometer (E), designed by Biondi,1 is nused for measuring the

pressure of the gas in the discharge tube. This manometer is obviously

not bakeable, but a small heating wire is immersed in the oil reservoir

to degas the oil during bakeout.

The two tungsten grids (F) and (G) are utilized for accelerating

the diffusing ions to the appropriate energy required for efficiently

traversing the quadrupole field.

Grid (G) is maintained at ground potential and the positive or

negative accelerating potential for positive or negative ion analysis

respectively is applied to grid (F). This arrangement is made to obtain

a zero potential difference between the axis of the quadrupole field

and the axis of the ion beam. This condition is very important for

maxi'uum efficiency requirements because if the incoming 'stable' ion

s as a potential difference, it will acquire a radial energy which might

be larger than the ellowable radial energy, and hence will result in

the loss of this astable" ion to the electrodes of the quadrupole field.

To fulfill this condition, the accelerating field is made as homogeneous

as possible by decreasing the distance between the two grids.

Figure 5.2 shows an enlarged view of the gaseous discharge tube

tip containing the hole. The choice of the sise of the hole (about

25 microns) is based on the requirement that it should be very much

smaller than the thickness of the plasma sheath in order not to dis-

turb the sheath configuration. The hole is made by first sealing a
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tungsten wire with a diameter equal to the required hole size into the

g.L.ss tube. The tube wall, at the face of the hole, is then ground and

the wire is subsequently etched away. The electrodes of the discharge

tube are made out of Molybdenum sheet; the diameter of the electrodes

is one Inch or less.

A thermocouple pressure gauge measures the fore-pressure of the

mechanical pump and thus serves as a high pressure control. If during

bakeot, for example, the pressure rises above a certain preset value,

the thermocouple potential (proportional to the pressure) rises and

trips a relay so as to switch off the povor to the ovens and the dif-

fusion pump. Figure 5.3 shows the wiring diagram for the ion-source

vacuum system.

Reference

1. Biondi, M. A., "Oil manometer for ultra-high vacuum system ,

Rev. of sc. Inst. 24, 989 (1953).
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Chapter 6

Yehanical Desian Considerations

6.1 The quadrupole system

The quadrupole field it obtained by four electrodes shaped to

form an equilateral hyperbola having a - b - r - 2 cm. An assembly

of the electrode system is shown in Fig. 6.1.

The outer casing (A) in a stainless steel Type 304 pipe, 6 inches

internal diameter and 0.1281 wall thickness; the tube is 100 ca long.

Each of the four hyperbolic electrodes is formed by stretching 31

%olybdenum wires of 0.508 - in diameter along the length of the

tube$ the cross section of each set of wires thereby lying on an arc

of the equilateral hyperbola. The wires are fastened on each end by

small stainless steel screws to two stainless steel Type 303 plates

(B) of the shape shown in Pig. 6.2. It is to be noted that each set

of diagonally opposite electrodes (wires) are fastened to the same

plate since they carry the same polarity of potential. This is done

in order to reduce the alignment problem which will be discussed later.

It is interesting to mention that the hyperbolae were accurately cut

in plates (B) by determining first the length of the hyperbolic arc

(which involved the evaluation of an elliptic integral*), thus ac-

curately determining the exact position of each wire with respect to

a chosen reference point. The metal was thereafter removed with the aid

of a precise milling machine. Plates (B) are held in place by four

studs each to the specially shaped set of flanges (C). A total of

*For the method of calculation, the reader is referred to the appendix.
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eight stainless steel plates (D) 1 thick are fastened each under a16

hyperbolic arc as shown in Pig. 6.1. Each plate ham a not of holes

0.508 = in diameter very accurately drilled along an identical hyper-

bolic are through which the sot of wires pass. Plates(D), therefore,

act as guides to the wires and are utilised for very fin* adjustments

during the alignment procedure.

Insulation is achieved using small bushings made of IAlSiMal

material and were kindly supplied by the Power Tube Division of

General Electric Cbmpany, Schenectady, New York. This material has

the advantage of possessing a high compression strength combined with

the ability to withstand high bakeout temperatures while maintaining

good dimensional stability.

6.2 Admissible over-all machining and alignment tolerances

It is understood that the behaviour of the mass-spectrometer is

largely determined by the position of the operating point in the sta-

bility diagram, i.e. by the parameters 'e and q (compare section 2.9).

It follows that these parameters must be stabillsed to approximately

(1: 2a/bA) of their value. Hence, the field radius r0 must be constant

to better than (1: 4m/hm). This sets the upper limits to the tolerances

in machining, which, in our specific case were kept within + 0.001 inch;

this permits therefore, a maximum resolution of 320.

The performance of the spqctromter is also determined by the

degree of symmetry of the quadrupole field and especially its symmetry

about the tube axis. In other words, it is required, as previously

mentioned in chapter 5, that the axis of the spectrometer tube be at

ground potential. This condition is approached at high degrees of

symmetry of the quadrupole field. In practice, this is achieved by
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stretching a fine conducting wire along the tube axis, switching on the

do and rf potentials and adjusting the position of the wires so an to

obtain a minima potential on the wire with respect to ground.

6.3 Wire tension

The iolybdenum wires are required to be under a tension equal to

approximately 40 of its breaking load. This explains the reason for

choosing molybdenum as a material for the wires since it possesses the

required tensile strength. There are two reasons for applying this

large mount of tension, namely,

1. to keep the deflection due to the attractive forces between

two sets of adjacent wires, especially those at the end of the hyper-

belie arcs wn.h are closest to each other, within the set tolerances.

When calculating the force of attraction in this region of very high

field strength, it is found that the required tensile force is quite

large, exceeding, in effect, the yield strength of some of the known

conducting materials; hence, the choice of molybdenum.

2. to minimize sagging of the wires.

6.4 The differential expansion problem

One of the basic requirements, which had to be taken into account

in the design of the spectrometer, is the ability to bake out the whole

system under vacuum at 450 0C for a period of at least 12 hours. This

is done to ensure having a clean vacuum system which is essential for

reliable interpretation of experimental data. Bakeout presents a

problem only in the quadrupole system. Here, the difference in the

thermal coefficient of expansion between the stainless steel outer tube

and the molybdenum wires becomes quite serious. If the wires are in-

stalled and the system heated, the tension on the wires will gradually
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increase due to the larger coefficient of expansion of stainless steel.

A simple calculation showed that at a temperature as low as 300°C, the

tension becomes so large that it will exceed the yield strength of

molybdenum resulting in a permanent deformation of the wires. Con-

sequently, when the system cools after bakeout, the tension on the

wires will be lost and they will therefore sag. This problem was

studied very carefully and it was found, unfortunately, that it could

not be solved by changing the material of the wires because, a material

having a higher tensile strength like tungsten, sayhas also a smaller

thermal coefficient of expansion. Stainless steel wires, on the other

hand, could not be used since they possess a high creep rate, especially

at higher temperatures. Thus, while it eliminates the differential

expansion problem altogether, after a few bakeouts we will end right

where we started from.

The problem was solved, therefore, by deliberately sagging the

wires, baking out the system with the wires sagged, cooling to room

temperature and then pulling the wires back to the required amount of

tension. This was achieved through the use of an extra flange and

bellow (E), fastened to the tube at the far end of the spectrometer

(lig. 6.1). The bellow is first rigidly fixed in its neutral state

(neither expanded or compressed). The wires are then installed and

pulled to the required amount of tension. Before bakeout, the bellow

is allowed to contract, thereby sagging the wires, and is then pulled

back after bakeout. A hydraulic Jack system will probably be used to

measure the force on the flange thereby making it possible to adjust

the tension on the wires after bakeout. This method adds the advantage

of easily adjusting the tension on the wires since it might change due

to electrical heating effects or otherwise.
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The quadrupole system is connected to the ion source via a short

section (F) of stainless steel 61 tubing with gold-ring sealed flangs

as shown in fig. 6.1. To ensure maximum sealing efficiency of the

flanges, a bellow must be inserted wherever a set of two flanges con-

noec together. This bellow relieves the stresses which might occur in

the flanges if all connections were rigid. Theose stresses are the main

cause for leakage around the gold ring.

Three sections of 3" diameter tubing are connected to the main

section (F), thereby providing access to the system. One tube con-

nects to the mass-spectrometer pumping system. The second tube is

utilised for electrical wire inputs and fastening of grids. The third

tube is preserved for further development of the studies and may be

combined with a quartz window for optical viewing of the gaseous discharge

in the ion source.

At the far end of the spectrometer, a similar section of tubing

connects the output of the quadrupole system to the ion multiplier

detection system. The ports at this end are again utilised for pumping

and focusing of the effluent ions.

6.5 Mounting of the mass-spectrometer system

A desired feature, which was taken into account in the design of

the system, was equipment 'mobility". The entire mass-spectrometer

system is constructed to be a mobile system. It was both plausible

and desirable to design it in this manner when taking into consideration

the fature developments In our research program which will require the

combination of the mass-spectrometer with other research equipment

for simultaneous measurements.
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The entire system is placed on a table 93v x 38" x 30' high,

which is made of 'Dexion" slotted angle iron. The table has a 3/4"

plywood and formica top and in supplied with heavy-duty casters.

iounted on the table is an angle iron frame on top of which are placed

a number of heat insulating blocks made of aluminum filled with glass

wool and covered with Transit* material. These blocks cover the whole

area of the table and act to insulate the heat of t1- ovens rzv.. A41

bottom part of the table.

The mar: mpectrometer, excluding the ion source vacuum and gas

handling system, is held above the Transite top with three heavy U-

shaped stainless steel cups because of the low bending stress of the

Transite. The cups holding the spectrometer are fastened very rigidly

to two channel-beam sections running lengthwise under the table top and

are in turn rigidly fastened to the frame of the table.

By clamping the mass-spectrometer tube rigidly at the ion source

end, it is, therefore, possible to allow thermal expansion of the tube

during bakeout to take place in one direction only, namely, down the

tube toward the detection system. This is done in order to preserve

the critical align.-' of "v quadrupole system with the ion sourie.

The system is heated for ba-eout purposes through the use of six

:nverted U-shaped oven sections which are placed over the entire area

of the table. The ovens use ten kilowatts of electric power to heat the

mass-spectrometer system. The ovens are divided into two parts, the

ion source oven and t*.. mass-spectrometer oven. Each of the two ovens

is separately controlled by a "Partlow Temperature Control" and in

addition, each in supplied with a cutoff relay system for switching off

the oven supplies in case of serious pressure rise in the system. The
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o'ruit diaqrm for the oven control systmo is shown in Fig. 6.3.

Reference

1. Paul, W., Reinhard, H. P., and von Zahn, U., v Das elektriuohe

Massenfilter als Massenspektrometer und Isotopentreanerw, Z.

Phys. 152(2), 143 (1958).
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Chapter 7

The Mass-Svectrcmeter Vacuum System

7.1 Piping speed considerations

In the practical and experimental fields of the science of high

vacuum in general, it is quite essential to determine the "conductivity'

of the channels through which the gases flow. The conductivity is de-

fined as the rate of flow of gas in cubic centimeters per second per

unit pressure difference.

Since the conductivity is a function of the dimensions of the tube,

as expected, it will certainly be influenced by a sudden change in

the cross-sectional area of the tube.

An expression for the conductivity could be defined as

F. 1/2 (7.1)W r P PI P2

where

2Q is the quantity of gas flowing, at a pressure of 1 dyne/cm

through the tube.

F is the conductivity.

Wrpl1 /2 is the total resistance of the tube together with

the influence of the end opening.

Pi is the density of the gas at normal temperature and a

pressure fI dyne/cm2 . 7.5006 x 10-4 = Hg.

Hence, Wrp,1 /2 represents the combined "resistance" of the tube to

2molecular streaming at a pressure of 1 dyne/cm

It has been shown by Jnanananda1 that the "reuistance' of a tube

of cylindrical configuration to the flow of the gas may be expressed as
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Pll1/2 m W )1 L P11/2

where

L is the length of the tube in a

D is the diameter of the tube in om.

If one end of the tube be circular with dimeter DO cm, the total re-

sistanoe W r, 1/2 of the tube, together with the influence of the end

opening, is given by
I

pil l/ W - (W + WO)P1/2 - 6L + 3192)P 1/2
S(2) 1/2D D 2  1

(7.2)

Hence

F - 2.394L 3.192).1  1 (7.3)3 + 2  1/2
D D'P 1

It follows from the qas laws that the density p1 at a pressure of

1 dyne/cm 2 is

M

where

M in the molecular weight.

R is the universal gas constant.

T is the temperature in degrees Kelvin.

Therefore,

F 2.394L 3.192 )-1 1/2
F D 3 +  D8 )(7.4)

It is to be noted that equation (7.3) and (7.4) hold only when the

ratio of the diameter of the tube D to the mean free path of the gas



molecules In very small (Knudson flow).

We will now proceed to obtain an estimate of the resistance of

the tubing connecting the mass-spectrometer to the diffusion pumps

using equation (7.2).

Resistance of tube oonnectina the mass-spectrometer to the high vacuum

valve.

The diameter of the tube Is taken to be 3 inches - 7.5 on. The

inlet diameter of the valve is 2 inches - 5 cm. The length of the

tube is estimated to be 30 ams, so that

Pi 1 /1 2 w - 6 xS30 3L.192 .0.8 3 p 
1 / 12 M 3 Sec.

r (2-0T1/ x (7.5) 3 (5.0)21

Resistance of tubina connectina hiah vacuum valve to diffusion Vumv

It is assumed that the resistance of the valve when fully open

is negligible.

Taking an estimated tube length of 75 cam, we find

Pi1/2 w r2- 0.438 p 1l/2 cm-3 sec.

Hence, the total tube resistance is

Pi1/2 wrtoa- (0.438 + 0.183)o0 1/2 1/=3 sc

For air at room temperature

( U 1 / 2 -i 2 9 x 1 3 d y e c
M 9l 3 yem

Hence,

Fw29 x 103 46.7 x 10 3 46.7 liters/sec.0.621
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Caleulatign of ggmina med

The pumping speed is one of the characteristics of a vacuum pump.

It is defined as follows

The pamping spod at any given pressure in the volume of gas ab-

stracted per unit time, measured at that pressure, from an enclosure

containing gas at the sae Asan pressure. This definition, which is due

to Gaede, thks confines itself to the speed at a given pressure instead

of the pmp speed in general for all pressures. This restriction is

proper, for in most of the pumps the pumping speed varies with the

variation of pressure.

In accordance with the above definition, the pump speed S may be

given the precise expression

Sm(-) . (7.5)
dt p

Influence of .onnectina tube system uvon the vumping speed

As a result of trosistancei of the tube system encountered by the

gaseous flow, the actual pumping speed E depends not only upon the in-

trinsic pump speed S of the pump but also upon the "conductivity' P.

The pressure p at the lower pressure terminus of the puap therefore

differs from the pressure p1 in the vacuum enclosure.

An equation, expressing the relation between the intrinsic pump

speed S, the 'conduotivity' F, and the actual pumping speed E can easily

be obtained. This is found to be

SF
E a SP (7.6)

Upon close observance of this expression, one can readily see that it

is important for an efficient utilization of the maximum speed of a

pump that the dimensions of the connecting tube be so chosen that F
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Is made as large as practicable. If the ditmensions of the tube system

were, however, to be determined by other consi trations, so that F is

not of sufficiently large magnitude, it would be futile to make use of

a pmp of high intrinsic speed.

Three air-cooled three stage glass oil diffusion pmps are used

to pump down the mass-spectrometer system. The pmps, employing Octoil-S

pumping fluid are manufactured by Consolidated Eloctro-dynamics, Type

No. GF26. Each pump is connected separately to the system by similar

tube and valve arrangements. Each pump has a specified intrinsic speed

of 25 liters/second. Hence, using the estimated conductivity F of

tubing for each pump, we obtain the actual pumping speed as

E = 25 x 46.7 -16.28 liters/sec.25 + 46.7

Hence, the total pumping speed of the system is

E total w x 16.28 = 49 liters/sec.

This pumping speed proves to be quite adequate since the approximate

total volume of the mass-spectrometer system is 42 liters.

7.2 Description of the vacuum system

The vacuum system layout is shown schematically in Fig. 7.1. The

diffusion pumps are backed by a 'Cenco Hypervac 25", 264 liters/minute

two stage rotary mechanical pump which produces a forepressure of

about 10-4 MA Hg. The vacuum system connections are very similar to

that of the ion source system which has been described in chapter 5,

except for the following points which should be mentioned:

1. The valves shown, which are used for the connections between

the mass-spectrometer and the diffusion pumps are 2" in diameter to
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keep the conductivity of the tubing as high as possible. These valves

have been newly developed by Granville-Philips Company and are bakeable

up to 450 degrees Centigrade.

2. The seolite traps are placed on the diffusion pump side of

the valve. The reason being that these traps are to be baked out

separately, with the valve closed for isolating the ion multiplier

detector from any oil vapors which, apparently, are quite harmful.

3. The three ion gauges shown are operated by one "Veeco Type

RGS-A vacuum gauge control panel' using a relay switching mochanism

for measuring the pressure at each ion gauge separately. The same

OVeeco" measures the forepressure of both mechanical pumps through the

use of two thermocouple gauges.

4. High pressure cut-off relays are also inserted and are installed

in a manner similar to that described in the ion-source vacuum system.

The circuit diagram of the mass-spectrometer vacuum control panel is

shown in Pig. 7.2.

Reference

1. Jnanananda, S., 'High Vacua", D. van Nostrand Company, (1947).
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Chapter 8

Design of Electronic Awaratus

8.1 Electric power requirements for the quadrupole system

With reference to chapter 3 which dealt with the design parameters

of the spectrometer, the following electric power requirements were

obtained:

]F Power: Frequency: 0.5 Mcl, 1.0 Mc/s, 2.0 Mc/s

Voltage range: 116 volts to 1457 volts

Range of power requirement: 0.6 watts to 50 watts

Stability and accuracy: better than + 0.1%

DC Power: Voltage range: 20 volts to 240 volts

Stability and accuracy: better than + 0.1%

Power requirement: nil o

A block diagram of the components used in meeting these require-

ments is shown in Pig. 8.1. This consists of the following units:

1. A very stable and accurate signal -gnerator which is utilised

for generating the required radio frequencies. The generator is a

'€ iemens Type Rel 3W 518/c2a level oscillator" having the following

Lpecifications:

Frequency range: 30 kc/s to 15 Mc/s, with frequency look-

in in 100 kc/s steps.

Additional incremental frequency control, continuously ad-

justable from 0 to 100 kc/s.

Maximum frequency error + 2 x 10- 5 ! 300 c/s.

Maximum frequency variation with 101. line voltage variation:

+ 1 x I0- 6 + 30 c/o.
+llO !Ocs
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Output level (full scale deflection) -60 db to +10 db.

Source impedance can be switched& 0 to 150 ohms in steps.

Automatic synchro-tuning system.

Frequency sweep facility when used in conjunction with a

sweep generator.

2. RP Linear amplifier

The output sinusoidal radio frequency signal is fed into a linear

push-pull amplifier which is capable of delivering up to 170 watts of

radio frequency power to the load. A linear amplifier was used in

order to eliminate the need for an intermediate driving stage between

the signal generator and the amplifier.

3. Voltage step-up unit

In order to meet the high rf voltage requirement while maintaining

a good degree of stability, the amplifier is loosely coupled to the load

(quadrupole system) through a voltage step-up unit. Loose coupling has

the advantage of minimizing the effect of load impedance variation on

the amplifier. This is important in our case since it has been shown

that the capacity of the quadrupole system changes with the mass of

the injected ions. Voltage step-up is achieved through making use of

the fact that the quadrupole system presents a capacitive load to the

amplifier. Therefore, two variable inductors are introduced, as shown

in Fig. 8.2, which are utilized to series-tune the circuit while main-

taining symuetry and thus obtaining maximum voltage across the capacitive

quadrupole system.

4. Rectifier

It was seen that the resolution of the mass-epectrometer is solely

determined by the ratio of the applied dc voltage to the rf voltage
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amplitude. It was, therefore, advantageous to generate the required

do voltage through rectifioation of the rf signal and using potential

dividers to obtain the desired ratio as shown in Fig. 8.2. This

method, therefore, makes it possible to maintain the resolution of the

spectrometer constant, since any change applied to the rf voltage V will

produce a proportional change in the do voltage U, provided the potential

divider settings remain unchanged.

Two high voltage silicon rectifiers were used for obtaining posi-

tive and negative do potentials through half wave rectification. The

desired portion of the rectified voltage in selected via the potential

dividers R and R2 and is then superimposed on the rf signal through

radio frequency chokes of the appropriate value. The combined signal

is the% delivered to the quadrupole system. R is a 10 kilo-ohm

potentiometer which is adjusted to obtain the desired symmetry of the

field. R1 and R2 are mechanically coupled in order to ensure that

symmetry is maintained while changing the resolution of the mass-spectro-

meter.

8.2 Design of the rf linear power amplifier

The push-pull linear amplifier was designed using the following

vacuum tubes:

Type: EIMC 4CX3OOA compact ceramic integral-finned power tetrode.

Maximum plate dissipation: 300 watts each.

Cooling: Forced air.

Maximum operating frequency 500 megacycles per second.

The most important characteristic of a linear amplifier is the

relationship between output voltage and exciting voltage, since this

shows the extent to which the amplifier is actually linear. In a
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typical characteristic, the relation between the two is quite linear

up to a certain critical exciting voltage, after which the output

levels off or saturates. The linearity of the amplifier characteristic

below saturation is greatest when the amplifier tube is biased to
1

projected cutoff exactly.

We will now proceed to determine the operating voltages and cur-

rents of the amplifier on a one tube basis, since in push-pull amplifiers

both tubes are operating under identical conditions.

From the available data of the 4CX300A tube, we obtain the following

values:

Amplification factor (grid to screen) 4aq W 4.8.

Typical do plate operating voltage Eb - 2000 volts.

Maximum allowable plate dissipation - 300 watts.

DC screen voltage E. = 350 volts.

Peak space current I - 500 ma.max

Since the amplifier is to operate at projected cutoff, the angle of

plate current flow 20, shown in the instantaneous diagrams in Fig. 8.3,

is equal to 1800. Therefore, the required dc bias voltage

E

E ___ 350 - 73 volts.
c 'sg 4.8

The grid driving voltage E can now be taken to ' e 70 volts. From theg

existing curves, which give the relation between the direct current

Iay and the fundamental frequency component of the space current ampli-

tude I to the peak amplitude I ax as a function of angle flow, we

obtain for 0 - 900

I I
max max
a and 2Iav
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so that

1 0.5 x 500 x 0"3 - 250 ma

and

I - 0.318 x 500 x 10 - 3 - 160 Maav

It is known that the choice of a low load impedance in a linear

amplifier extends its linearity, but will, unfortunately, also lower

the output power and efficiency. The load impedance Zt in chosen to

be 2.0 kilo-ohms.

E1

where E1 is the rf plate voltage amplitude. Therefore,

E 1 - 1 Zt - 250 x 10 - 3 x 2.0 x 103 . 500 volts

El 1 500 x 250 x 10 "3

Output power/tube-- -2 2

- 62.5 watts.

Thus, the total available power output from the amplifier is equal to

125 watts. This value is quite adequate since the theoretical power

requirements, as calculated in chapter 3, yielded a maximum of 50

watts. This output power does, by no means represent the maximum

capacity of the amplifier, since much larger powers could be easily

obtained if desired as previously mentioned.

Input power = EbIav - 2000 x 160 x 10"3 . 320 watts.

Plate dissipation - 320 - 62.5 - 257.5 watts.

Thus, the design is safe.
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Tank circuit desiaM.

Load impedance - 2 x 103 = wL .

Assuming an effective Q to be 10,

we have

L=2 x 10' 3l
10 2 x 102 *200 ohs-

For a frequency of 0.5 MO/s

L - 200 = 63.5ph

and,

C - 1 1590 pf
200 Tr 106

For 1 Mc/s:

L - 32h and C - 800 pf

For 2 Mas:

L - 164h and C - 400 pf.

The actual circuit diagram of the amplifier is shown in Fig. 8.4.

The required control grid bias voltage was supplied from a very

stable fixed "Hewlett-Packard, Type 712" regulated power supply. The

screen grid power requirements are also supplied separately from the

same power supply. The screen voltage is very highly regulated and

is maintained constant with 1 x 10"5 of its value, thereby ensuring

great stability of the amplifier.

The plate power supply, the circuit diaqram of which is shown in

Fig. 8.5, was designed and built in the laboratory. It is capable of

supplying up to 3000 volts at 500 me through the use of a full wave
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mercury vapour rectifier. Through proper filtering, it was possible

to maintain the ripple below 0.5% with adequate regulation. To

achieve the required stability, the amplifier and power supplies were

connected to the line voltage via a special 'Solal constant voltage

transformer, which eliminates any effects due to line voltage variation.

Special precautions were taken in the construction of the amplifier

for elimination of parasitic oscillations and other instability effects.

Adequate forced air cooling was supplied to the tubes and shielding

was adequately employed wherever it deemed necessary. Special pre-

cautions are also taken against damaging the tubes due to sudden failure

of the plate or grid supply voltages by using over-current cutoff re-

lays.

Reference

1. Mahmoud, A., "Lecture course, Cairo University", (1957).
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Chapter 9

The Detection System

In this chapter, an attempt will be made to illustrate the different

methods by which ions extracted from a mass-spectrometer could be de-

tected. The method suited to our applications is thence chosen and

applied to the quadrupole spectrometer. An evaluation of the problems

arising with the method will be attempted, together with suggestions

as to the methods of solving them. Unfortunately, at the time of

writing this manuscript, it was not possible to varify the solution

experimentally but it is hoped that clear apprehension of the problem

would, at least, be achieved.

9.1 Brief outline of methods of detection

Several methods have been developed to detect the motion of a beam

of ions flowing out of an analytical instrument. The following are a

few of the more common and interesting methods:

a. Detection by the use of a Faraday Cage

This method has the advantage of possessing a high collection

cfficiency due to the large coverage space of the collector, but, un-

fortunately, is much less sensitive than some of the other methods.

This method was used in some of the earlier types of quadrupole mass-

spectrometers and proved to be successful for detecting currents in

the range 10 10 amps to 10 " 12 amps combined with an electrometer.

b. The ion-multiplier oscilloscope method

This method combines the use of an ion multiplier, which amplifies

the ion current through secondary electron emission gain, with an oscil-

loscope triggered by the ion beam. This method is very useful for fast

scanning purposes.
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a. Scintillation tyve mass-spectrometer ion detector

This is a new and relatively simple type of mass-upectrometer ion
1

detector developed by Daly. The positiwe ions are accelerated through

40 kV and impinge onto an aluminum surface releasing secondary electrons,

and these in turn are accelerated onto an organic scintillator, viewed

by a sealed-off photomultiplier. Counting methods could be used to

measure the intensity of ion beams. SiP- Ll6 ue(At,'-- has a low noise

level (4 x 10"20 amp) it is, therefore, quite sensitive and is easily

c.able of measuring currents of the order of 1018 amps. Its dis-

advantage lies, however, in the extremely high accelerating voltage

requirements.

d. The ion-multiplier electrometer-recorder method

The current jutput of the ion multiplier due to the impingement

of the ion beam on the first dynode, is integrated using an electro-

meter (usually of the vibrating reed type) and the signal is thereafter

recorded on a strip-chart recorder.

Considering that the normal gain of an ion multiplier is of the

order of 106 and that an electrometer is capable of easily measuring

currents 'I t1- order of 10'13 amps, it is evident that this method

is quite sensitive a. so, and could be used for the measurement of

very low ion currents; individual ions should, therefore, be observable.

Method (d) has been adopted in the present instrument, together

with the possible use of method (b), for the basic reason that it

satisfies "., high sensitivity requirement together with the ease and

simplicity of the circuitry involved.

9.2 The exit angle problem

It has been previously shown that the ions, while passing through

the quadrupole system, undergo a two-dimensional oscillatory type of
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mtion. One would expect, therefore, that a 'ustable' ion upon reaching

the end of the field will emrqe at an angle to the axis depending upon

its phase of injection. This is indeed the case and it constitutes a

problem, especially since maximm collection efficiency is desired. This

is also true when operatinc at very low ion currents (a few ions per

second) sinoe the individual ion now forms a measurable portion of the

beam.

In order to solve this problem, two suggestions could be made

a. Through the use of a simple electrostatic lens inserted be-

tween the end of the quadrupole system and the ion multiplieF. This

lens, which is constituted mainly of two diaphragms having a potential

difference between them, will tend to focus the diverging beam and

thus collimate it onto the first dynode of the ion multiplier.

b. Placing the ion multiplier as close as possible to the exit

of the quadrupole system. In this case, however, extreme care has to

be taken in shielding the ion multiplier from the end effects of the rf

field which might modulate the secondary electron beam and heat the

multiplier by induction. A suggested method to accomplish this is to

wrap the ion multiplier in a slitted metal cylinder thus achieving

shielding and prevention from induction heating simultaneously.

Reference

1. Daly, J. R., "Scintillation type mass-spectrometer ion detector",

Rev. of Sc. Inst. 31, 03, 264 (1960).
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Chapter 10

Planned Applications of the Mass-Swectrometer

As mentioned in the introduction of this manuscript, the identifica-

tion of ions is of prime importance for a reliable interpretation of

gaseous plasma phenomena.

Beside the more commwn usefulness of a mass-spectrometer in the study

of ionization probabilities, appearance potentials, etc., the mass-spectro-

meter described is constructed specifically for linking results obtained

with other measuring techniques established within the research group

at the Department of Electrical Engineering of the University of Minnesota.

The main effort of this group is directed towards the study of the physics

of disintegrating plasmas. Consequently, a full apprehension of the

phenomena involved requires completion of the following planned studies.

1. Afterglow studies

The types of ions present during the afterglow period will be

identified and their time rate of change measured.

2. Mass-mobility relationships

The mass-spectrometer will be combined with the available drift

tube "spectrometer" for a conclusive determination of the relation-

ships between the mass of ion and its mobility in various gases. This

combination makes it also possible to study ion-conversion phenomena.

For instance, an accurate determination of the conversion frequency for

processes of the type

x + X + Y-X2 + y

(XY) + + X

is of prime importance.
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The ffer which are planned to be studied are

a. Rare cases and their mixtures

We hope to obtain more conclusive information about the properties

and production mechanisms of molecular ions, such as He 2  , o2 ,

(HENe) + etc.

b. Hydrouen and rare eas-hydrown mixtures

When studying plasma phenomena in hydrogen the identification of

the type of ion involved is especially significant, since at least

three types of hydrogen ions exist, nmely, H, H2 , 3 Moreover,

very little information in available about the properties and pro-

duction mechanisms of the composite ions, such as (HeH) + , (NeH)+, etc.

3. Further developents of the mass-spectrometer

A study will be made of the possibilities which might exist in the

improvement of certain components of the mass-spectrometer; in particular,

the ion source design and the detection system. A possibility exists

to improve the latter through the use of the induced currents at the

electrodes due to the vibration of the ions as a method of detection.
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APPENDIX

Calculation of the Arc-Lenath of an Eguilateral Hyverbola

The equation of an equilateral hyperbola can be reduced to the

simple form:

2 2 2
x y a

Hence,

dy .x x
dx y 2 21/2"

(x 2 + a2)1 1

The length of one arc of the hyperbola from x - a to x - x0 is

equal to

X X

L = (I + (dy/dx)2 )1 /2 dx f ( + (dy/dx) dx
a 0

since the hyperbola does not exist for x < a

Thus,
x x

L - f (1 + (x2/x2+a2 1 1/2 dx - 21/2 f (x2 + a2/2)/(x 2+a2 1 1 /2dx.
0 0

Let

x = b tan 0

b- (a2 12)112

Hence,

x0  - b tan 00 or 0 - tan'1 xo/b

also, dx - b sec 2 do.

Substituting in the expression for L, we get
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L - 21/2 b io 3 dp 
0 (! tan20 + a2(2

. 2112 b J 0 2 "a 3
0I (tan0 + 1)

2 V 2 b r0o so ddo
seco(1 + cos 20) 1/2

0' dO
M b f 0d - where kI 2 112

0 os2 (1-k 2sn 2 )112 cro 01 k

This is a standard elliptic Integral, the solution of which is tabulated

as

A tano°  + k2 (D - F)
L-

kF2

where

S (1 -k 2 sin 2 2o)112

k - 1/2

k'2  1 _ k2 _ 112

D sn n2x dx F - E

(1 - k2 sin2 X) 11 2  " k2

in which

F a elliptic integral of argument k of the first kind

E = elliptic integral of argument k of the second kind.,

Hence, the length of the arc can be computed.

In the case of the spectrometer electrode, it was found to be 4.6028 cm.


